14 research outputs found

    Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study

    Get PDF
    Background: Automatic static analysis (ASA) tools examine source code to discover "issues", i.e. code patterns that are symptoms of bad programming practices and that can lead to defective behavior. Studies in the literature have shown that these tools find defects earlier than other verification activities, but they produce a substantial number of false positive warnings. For this reason, an alternative approach is to use the set of ASA issues to identify defect prone files and components rather than focusing on the individual issues. Aim: We conducted an exploratory study to investigate whether ASA issues can be used as early indicators of faulty files and components and, for the first time, whether they point to a decay of specific software quality attributes, such as maintainability or functionality. Our aim is to understand the critical parameters and feasibility of such an approach to feed into future research on more specific quality and defect prediction models. Method: We analyzed an industrial C# web application using the Resharper ASA tool and explored if significant correlations exist in such a data set. Results: We found promising results when predicting defect-prone files. A set of specific Resharper categories are better indicators of faulty files than common software metrics or the collection of issues of all issue categories, and these categories correlate to different software quality attributes. Conclusions: Our advice for future research is to perform analysis on file rather component level and to evaluate the generalizability of categories. We also recommend using larger datasets as we learned that data sparseness can lead to challenges in the proposed analysis proces

    Investigating Technical Debt Folklore - Shedding some light on technical debt opinion

    Get PDF
    We identified and organized a number of statements about technical debt (TD Folklore list) expressed by practitioners in online websites, blogs and published papers. We chose 14 statements and we evaluated them through two surveys (37 practitioners answered the questionnaires), ranking them by agreement and consensus. The statements most agreed with show that TD is an important factor in software project management and not simply another term for "bad code". This study will help the research community in identifying folklore that can be translated into research questions to be investigated, thus targeting attempts to provide a scientific basis for TD management

    A Case Study on Effectively Identifying Technical Debt

    Get PDF
    Context: The technical debt (TD) concept describes a tradeoff between short-term and long-term goals in software development. While it is highly useful as a metaphor, it has utility beyond the facilitation of discussion, to inspire a useful set of methods and tools that support the identification, measurement, monitoring, management, and payment of TD. Objective: This study focuses on the identification of TD. We evaluate human elicitation of TD and compare it to automated identification. Method: We asked a development team to identify TD items in artifacts from a software project on which they were working. We provided the participants with a TD template and a short questionnaire. In addition, we also collected the output of three tools to automatically identify TD and compared it to the results of human elicitation. Results: There is little overlap between the TD reported by different developers, so aggregation, rather than consensus, is an appropriate way to combine TD reported by multiple developers. The tools used are especially useful for identifying defect debt but cannot help in identifying many other types of debt, so involving humans in the identification process is necessary. Conclusion: We have conducted a case study that focuses on the practical identification of TD, one area that could be facilitated by tools and techniques. It contributes to the TD landscape, which depicts an understanding of relationships between different types of debt and how they are best discovered

    Investigating Technical Debt Folklore - Shedding some light on technical debt opinion

    Get PDF
    We identified and organized a number of statements about technical debt (TD Folklore list) expressed by practitioners in online websites, blogs and published papers. We chose 14 statements and we evaluated them through two surveys (37 practitioners answered the questionnaires), ranking them by agreement and consensus. The statements most agreed with show that TD is an important factor in software project management and not simply another term for “bad code”. This study will help the research community in identifying folklore that can be translated into research questions to be investigated, thus targeting attempts to provide a scientific basis for TD management

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD “interest” that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD “interest”. Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicators

    InViz: Instant visualization of security attacks

    No full text
    The InViz tool is a functional prototype that provides graphical visualizations of log file events to support real-time attack investigation. Through visualization, both experts and novices in cybersecurity can analyze patterns of application behavior and investigate potential cybersecurity attacks. The goal of this research is to identify and evaluate the cybersecurity information to visualize that reduces the amount of time required to perform cyber forensics

    Human factors in webserver log file analysis: A controlled experiment on investigating malicious activity

    No full text
    While automated methods are the first line of defense for detecting attacks on webservers, a human agent is required to understand the attacker's intent and the attack process. The goal of this research is to understand the value of various log fields and the cognitive processes by which log information is grouped, searched, and correlated. Such knowledge will enable the development of human-focused log file investigation technologies. We performed controlled experiments with 65 subjects (IT professionals and novices) who investigated excerpts from six Webserver log files. Quantitative and qualitative data were gathered to: 1) analyze subject accuracy in identifying malicious activity; 2) identify the most useful pieces of log file information; and 3) understand the techniques and strategies used by subjects to process the information. Statistically significant effects were observed in the accuracy of identifying attacks and time taken depending on the type of attack. Systematic differences were also observed in the log fields used by high-performing and low-performing groups. The findings include: 1) new insights into how specific log data fields are used to effectively assess potentially malicious activity; 2) obfuscating factors in log data from a human cognitive perspective; and 3) practical implications for tools to support log file investigations

    Managing technical debt in software-reliant systems

    No full text
    Delivering increasingly complex software-reliant systems demands better ways to manage the long-term effects of shortterm expedients. The technical debt metaphor is gaining significant traction in the agile development community as a way to understand and communicate such issues. The idea is that developers sometimes accept compromises in a system in one dimension (e.g., modularity) to meet an urgent demand in some other dimension (e.g., a deadline), and that such compromises incur a "debt": on which "interest" has to be paid and which the "principal" should be repaid at some point for the long-term health of the project. We argue that the software engineering research community has an opportunity to study and improve this concept. We can offer software engineers a foundation for managing such trade-offs based on models of their economic impacts. Therefore, we propose managing technical debt as a part of the future research agenda for the software engineering field
    corecore